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Received 28 April 1995, in final form 6 November 1995

Dedicated to the memory of S Chandrasekhar

Abstract. The solution to the linearizedBGK equation of kinetic theory is obtained via the
principles of invariance as formulated by Chandrasekhar. The solution represents an alternative
to the singular eigenfunction method featuring regular integral equations which are more easily
evaluated. Laplace transforms are obtained for the net flow velocity and velocity distribution for
both the albedo and Milne problems with wall reflection. The transforms are then numerically
inverted to a high degree of accuracy. Results are compared to those of Kainz and Titulaer.

1. Introduction

In the 1960s, Case and Zweifel [1] popularized the method of singular eigenfunctions, first
developed by van Kampen [2], to the linear Boltzmann equation describing neutron transport
in a medium. The method is very appealing owing to its similarity to the separation-of-
variable approach, widely used forPDEs, and to its mathematical elegance. Because of
this appeal, the method was applied to the linearizedBGK equation of kinetic theory [3]
characterizing the propagation of a disturbance into a gas bounded on one side resulting
in analytical solutions. Recently, the method was revisited in a rather extensive analysis
[4] in which exceptionally accurate results for selected quantities were found for the albedo
and Milne problems of kinetic theory with and without partially reflecting boundaries. One
major advantage of the singular eigenfunction method, shown for the range of problems
considered, is that these problems can be cast into the same expansion formalism with the
unknown coefficients determined from specific boundary conditions. By the same token,
the method also has a major numerical drawback since the expansion coefficients for the
(continuum) spectrum of the operator must be determined from singular integral equations
which can be solved analytically for a non-reflecting boundary but cannot be for a reflecting
boundary. Therefore, the singular eigenfunction method relies heavily on the solution
to singular integral equations and the associated numerical evaluation of principal value
integrals. While the analysis in [4] is flawless in its numerical presentation, considerable
experience in dealing with principal-value integration is required. For this reason and for
theoretical and numerical simplicity, a solution by application of principles of invariance
combined with a numerical Laplace transform inversion is presented here as an alternative
approach.

† On leave from Department of Nuclear Engineering, University of Arizona, AZ, USA.
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While not as mathematically elegant as the singular eigenfunction method, the solution
using the principles of invariance, first exploited by Chandrasekhar [5] in solving the
equation of radiative transfer, has not enjoyed the popularity of the singular eigenfunction
method. This is rather curious given the ease with which numerical solutions can be
generated to a high degree of accuracy, as will be shown. For the reader who may not
be familiar with the origin of the term ‘principles of invariance’, the phrase refers to
the invariance of the emergent distribution from a half-space to the addition of material
to the medium leading to a method of solution of the transport equation. This method
of solution has several distinct advantages over the singular eigenfunction method. In
particular, singular integral equations can be avoided. A nonlinear integral equation is
encountered, however. Fortunately, with an appropriate quadrature, it can be efficiently
evaluated through iteration. Also the solution for the spectrum of problems considered in
[4] can be shown to be special cases of the albedo problem for a general source. In addition
to theoretical simplicity, the expressions obtained by the principles of invariance lead to a
straightforward and highly accurate numerical evaluation for a modest computational effort.

The theory of the principles of invariance approach is presented in section 2. We begin
with the fundamental albedo problem solution at the free surface. The expression derived
for the exiting velocity distribution at the wall is shown to serve as the image function for
the Laplace transform inversion for the interior net flow velocity and the interior velocity
distribution function. Next, the albedo problem for a reflecting boundary is solved in terms
of the solution for the albedo problem. The section concludes with the solution of the
Milne problem for a reflecting boundary in terms of the corresponding albedo solution. In
all cases, the interior distributions are expressed as Laplace transform inversions which,
as will be shown, can be most efficiently evaluated. In the final section, the numerical
implementation and a demonstration is presented. The majority of the results found in [4]
and more are presented.

2. Theory

2.1. Albedo problem without reflection

The linearizedBGK transport equation for a flowing gas of interacting molecules in a half-
space can be written as [4][

u
∂

∂x
+ 1

]
f (x, u) = φ0(u)

∫ ∞

−∞
du′ f (x, u′) (1a)

wheref (x, u) is the perturbation of the molecular velocity distribution from an equilibrium
Maxwellian distribution

φ0(u) = 1√
2π

e−u2/2

at positionx measured in mean free paths and velocityu measured in units of the thermal
velocity. The fundamental albedo problem is defined for a source of the perturbation at the
free boundary(x = 0) of the form

f (0, u) = g(u) u > 0 . (1b)

Additional problems will be defined for a variety of boundary conditions with the
requirement

lim
x→∞ f (x, u) < ∞ . (1c)
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A more convenient form for (1) is obtained with the substitution

f (x, u) = φ0(u)h(x, u) (2)

to give [
u
∂

∂x
+ 1

]
h(x, u) =

∫ ∞

−∞
du′ φ0(u

′)h(x, u′) (3a)

h(0, u) = g(u)/φ0(u) u > 0 (3b)

lim
x→∞h(x, u) < ∞ . (3c)

The solution to (3) will now be found for several specificg(u).

2.1.1. Standard albedo problem.The solution procedure begins by temporarily specifying
g(u) to be

g(u) = φ0(u0)δ(u− u0) u0 > 0

and reformulating (3) into an integral form by following the disturbance along its trajectory.
Thus, from integral transport theory foru > 0

h(x, u; u0) = δ(u− u0)e
−x/u0 + 1

u

∫ x

0
dx ′ e−(x−x ′)/uq(x ′; u0) (4a)

and foru < 0

h(x, u; u0) = − 1

u

∫ ∞

x

dx ′ e−(x ′−x)/uq(x ′; u0) (4b)

where the net flow velocity in the direction of flow for this case is defined as

q(x; u0) ≡
∫ ∞

−∞
du′ φ0(u

′)h(x, u′; u0) . (5)

The explicit dependence onu0 is indicated sinceh now represents a Green function in the
velocity variable. Special note is made of the expression for the exiting perturbation at the
wall (to be used later)

h(0,−u; u0) = 1

u

∫ ∞

0
dx ′ e−x ′/uq(x ′; u0) u > 0 . (6)

Explicit solution forh at the wall (x = 0). An expression for the exiting perturbation is
obtained in the following analysis as outlined by Busbridge [6] for the equation of radiative
transfer and adapted here for kinetic theory.

(i) Integral equation forq(x; u0). By forming an equation forq(x; u0), we obtain

(1 − Lx)q(x
′; u0) = φ0(u0)e

−x/u0 (7a)

where the operatorLx is defined by

Lx ≡
∫ ∞

0
dx ′ k(|x − x ′|)(·) (7b)

with

k(x) ≡
∫ ∞

0
duφ0(u)

e−x/u

u
. (7c)
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(ii) Differentiation with respect tox. By differentiation of (7a) with respect tox, there
results

(1 − Lx)
∂q(x ′; u0)

∂x ′ = −φ0(u0)
e−x/u0

u0
+ k(x)q(0; u0) (8)

which is obtained by a change of variable and interchanging the differentiation and integral
operators.

(iii) Alternative expression fork(x). From a division of (7a) by u0(u0 > 0), integration
overu0, and noting the form ofk(x) in (7c), we conveniently find

k(x) = (1 − Lx)

∫ ∞

0

du′

u′ q(x
′; u′) . (9)

(iv) Integro-differential equation forq(x; u0). With the substitution of (9) and (7a) for
φ0(u0)e−x/u0, equation (8) becomes

(1 − Lx)

{[
∂

∂x ′ + 1

u0

]
q(x ′; u0)− q(0; u0)

∫ ∞

0

du′

u′ q(x
′; u′)

}
= 0 .

From an analysis similar to that found in [6], one can show that the expression in the curly
brackets is in the null space of the operator 1−Lx for the anticipated function space of the
solution; thus,[

∂

∂x
+ 1

u0

]
q(x; u0) = q(0; u0)

∫ ∞

0

du′

u′ q(x; u′) . (10)

(v) Integration overx. Multiplying (10) by e−x/u, integrating overx on [0,∞) and making
liberal use of (6) yields

h(0,−u; u0) = u0

u+ u0
q(0; u0)

[
1 +

∫ ∞

0
du′ u

u′ h(0,−u; u′)
]
. (11)

(vi) Reciprocity. Since the operatorLx is self-adjoint, shown by considering (7a) for u
andu′ separately, integrating overx on [0,∞) and subtracting, the following reciprocity
relation holds:

uφ0(u)h(0,−u; u′) = u′φ0(u
′)h(0,−u′; u) . (12)

(vii) Final expression forh(0,−u; u0). When the reciprocity relation is introduced into
(11), we obtain

h(0,−u; u0) = u0

u+ u0
q(0; u0)q(0; u)/φ0(u) (13)

where the relation

q(0; u) = φ0(u)+
∫ ∞

0
du′ φ0(u

′)h(0,−u′; u) (14)

from (5) atx = 0 has been used.
When equation (13) is introduced into (14), there results

h(0,−u; u0) = φ0(u0)
u0

u+ u0
H(u0)H(u) (15)

whereH is given by the following nonlinear integral equation:

H(u) = 1 + uH(u)

∫ ∞

0
du′ φ0(u

′)
H(u′)
u+ u′ (16a)

with

q(0; u0) ≡ φ0(u0)H(u0) . (16b)
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Interior solutions. If u is extended to the complexs plane by formally replacingu by 1/s,
equation (6) becomes

h(0,−1/s; u0)/s = L[q(x ′; u0)] (17a)

whereL is the Laplace transform operator

L ≡
∫ ∞

0
dx ′ e−sx ′

(·) . (17b)

Thus, by inversion, the net flow velocity of the perturbation is given by (from (15))

q(x; u0) = u0φ0(u0)H(u0)L
−1
x

{
H(1/s)

1 + su0

}
. (18)

There are several ways of performing the Laplace transform inversion. Once the singularities
of H(1/s) have been identified, the Bromwich contour of the inversion operator

L−1
x ≡ 1

2π i

∫ γ+i∞

γ−i∞
ds esx(·) (19)

whereγ is greater than the largest real part of any singularity, can be appropriately deformed
around the singularities leading to an integral along the branch cut as in [6]. This approach
will not be followed here since a numerical Laplace transform inversion algorithm has
been previously developed by the author. Its implementation will be briefly discussed in
section 3.

Similarly from a Laplace transform of (3), we obtain (using (15)), since the Laplace
transform ofq(x; u0) is

q̄(s; u0) = u0φ0(u0)H(u0)
H(1/s)

1 + su0
(20)

the following Laplace transforms ofh(x, u; u0) for u > 0:

h̄(s, u; u0) = u0

1 + su0
δ(u− u0)+ u0φ0(u0)H(u0)

H(1/s)

(1 + su)(1 + su0)
(21a)

h̄(s,−u; u0) = u0φ0(u0)
H(u0)

1 − su

[
H(1/s)

(1 + su0)
− uH(u)

u+ u0

]
(21b)

which also can be inverted numerically.

2.1.2. Solution forf . Sinceh is a Green function (in velocityu), one can immediately
write for the original source (equation (3b))

h(x, u) =
∫ ∞

0
du′ g(u′)h(x, u; u′)/φ0(u

′) (22)

and therefore from (2) the desired velocity distribution is

f (x, u) = φ0(u)

∫ ∞

0
du′ g(u′)h(x, u; u′)/φ0(u

′) . (23)

Similarly for the net flow velocity

n(x) ≡
∫ ∞

−∞
du f (x, u) =

∫ ∞

0
du′ g (u′)q(x; u′)/φ0(u

′) . (24)
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Thus, the transform off is from (23) and (21) foru > 0

f̄ (s, u) = u

1 + su
g(u)+ φ0(u)

∫ ∞

0
du′ u′g(u′)H(u′)

H(1/s)

(1 + su)(1 + su′)
(25a)

f̄ (s,−u) = φ0(u)

∫ ∞

0
du′ u′g(u′)

H(u′)
1 − su

[
H(1/s)

(1 + su′)
− uH(u)

u+ u′

]
(25b)

with corresponding inversions

f (x, u) = g(u)e−x/u + φ0(u)

∫ ∞

0
du′ u′g(u′)H(u′)L−1

x

[
H(1/s)

(1 + su)(1 + su′)

]
(26a)

f (x,−u) = φ0(u)

∫ ∞

0
du′ u′g(u′)H(u′)L−1

x

{
1

1 − su

[
H(1/s)

(1 + su′)
− uH(u)

u+ u′

]}
. (26b)

From (24) and (18), the transform of net flow velocity is simply

n̄(s) =
∫ ∞

0
du′ u′g(u′)H(u′)

H(1/s)

1 + su′ (27)

implying

n(x) =
∫ ∞

0
du′ u′g(u′)H(u′)L−1

x

[
H(1/s)

1 + su′

]
. (28)

Since the transforms have been determined explicitly, the limiting values atx = 0 and
∞ can be obtained via the Tauberian theorem (assuming the necessary conditions are met)

Y (0) = lim
s→∞[sȲ (s)] Y (∞) = lim

s→0
[sȲ (s)]

which yields from (25) and (27)

f (0,−u) = φ0(u)H(u)

∫ ∞

0
du′ u′g(u′)

H(u′)
u+ u′ (29a)

f (∞, u) = φ0(u)

∫ ∞

0
du′ u′g(u′)H(u′) (29b)

and

n(0) =
∫ ∞

0
du′ g(u′)H(u′) (29c)

n(∞) =
∫ ∞

0
du′ u′g(u′)H(u′) (29d)

where

H(1/s) = 1/s + O(1)

and from (16a)

H(0) = 1

have been used.
To compare to the results found in [4] let

g(u) = δ(u− u0)/u0 . (30)

Thus

n(0) = H(u0)/u0 (31a)

n(∞) = H(u0) . (31b)
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This implies thatQ(u) in [4] is H(u). Thus,H can actually be obtained analytically in
terms of integrals as shown in [4]. A more convenient and less awkward evaluation can,
however, be obtained from (16a). To complete this case (29a), (26) and (28) yield

f (0,−u) = φ0(u)

u+ u0
H(u0)H(u) (32a)

f (x, u) = δ(u− u0)
e−x/u0

u0
+ φ0(u)H(u0)L

−1
x

[
H(1/s)

(1 + su)(1 + su0)

]
(32b)

f (x,−u) = φ0(u)H(u0)L
−1
x

{
1

1 − su

[
H(1/s)

(1 + su0)
− uH(u)

u+ u0

]}
(32c)

and

n(x) = H(u0)L
−1
x

[
H(1/s)

1 + su0

]
. (32d)

From the above analysis, it is apparent that the solutionh(0,−u; u0) of the fundamental
albedo problem serves as the basis for both the interior solutionsh(x, u; u0) andf (x, u).
As will be shown in the following sections,h(0,−u; u0) will also provide the solution for
the more general albedo problem with wall reflection as well as the Milne problem with
reflection. Evidently, each solution builds upon the previous.

As the reader can readily see, the solution via the principle of invariance is based
upon anH -function completely analogous to the one derived by Chandrasekhar [5]. From
the analysis of [4], it is also apparent that the singular eigenfunction method is based on
the H -function but involves singular integrals which have been avoided entirely in the
formulation presented here, making the numerical evaluation more apparent. Also aiding
in the evaluation is the numerical Laplace transform inversion which gives an efficient
evaluation for a modest effort.

2.2. Albedo problem with reflection

In this section, the albedo problem with partial specular reflection,[
u
∂

∂x
+ 1

]
f (x, u) = φ0(u)

∫ ∞

−∞
du′ f (x, u′) (33a)

f (0, u) = g(u)+ r(u)f (0,−u) u > 0 (33b)

lim
x→∞ f (x, u) < ∞ (33c)

is considered with

0 6 r(u) < 1 .

2.2.1. Standard albedo problem.Let

g(u) = δ(u− u0) .

Thus, corresponding to section 2.1.1[
u
∂

∂x
+ 1

]
f (x, u; u0) = φ0(u)

∫ ∞

−∞
du′ f (x, u′; u0) (34a)

f (0, u; u0) = δ(u− u0)+ r(u)f (0,−u; u0) u > 0 (34b)

lim
x→∞ f (x, u; u0) < ∞ (34c)
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is the standard albedo problem where as before explicit dependence onu0 is indicated.
From equation (23), the solution atx = 0 for the source specified as

g(u) = δ(u− u0)+ r(u)f (0,−u; u0) (35)

can immediately be written as

f (0,−u; u0) = φ0(u)

[
h(0,−u; u0)

φ0(u0)
+

∫ ∞

0
du′ r(u

′)
φ0(u′)

h(0,−u; u′)f (0,−u′; u0)

]
(36)

or substituting (15) gives

f (0,−u; u0) = φ0(u)

[
u0

u+ u0
H(u0)H(u)+H(u)

∫ ∞

0
du′ r(u′)

u′

u+ u′H(u
′)f (0,−u′;u0)

]
.

(37)

Following the approach of Sobolev [7] for the equation of radiative transfer, the form

f (0,−u; u0) = u0φ0(u)H(u)H(u0)

[
A(u, u0)

u+ u0
+ B(u, u0)

u− u0

]
(38)

is suggested without loss of generality. When this expression is introduced into (37) there
results after equating the coefficients of the terms 1/(u− u0) and 1/(u+ u0)

B(u, u0) =
∫ ∞

0
du′K(u′)A(u′, u0)

[
1

u′ + u0
− 1

u+ u′

]
(39a)

A(u, u0) = 1 +
∫ ∞

0
du′K(u′)B(u′, u0)

[
1

u′ − u0
− 1

u+ u′

]
(39b)

with

K(u) ≡ ur(u)[H(u)]2φ0(u) . (39c)

As shown in [7], the specific dependence ofA andB can be assumed to be separable of
the form

A(u, u0) = α(u)α(u0)− β(u)β(u0) (40a)

B(u, u0) = α(u)β(u0)− α(u0)β(u) . (40b)

After some algebra, it can be shown that the following integral equations satisfy (39):

α(u) = 1 +
∫ ∞

0
du′ K(u

′)
u+ u′ β(u

′) (41a)

β(u) =
∫ ∞

0
du′ K(u

′)
u+ u′α(u

′) . (41b)

ThusA andB have been specified and (38) provides the desired solution in a form never
before presented.

The net flow velocity is obtained by noting, as in section 2.1.1 from integral transport
theory,

f (0,−u; u0) = φ0(u)

u

∫ ∞

0
dx ′ e−x ′/un(x ′; u0) (42)

which again is the Laplace transform ofn(x; u0), and formally upon inversion gives

n(x; u0) = u0H(u0)L
−1
x

{
H(1/s)

[
A(1/s, u0)

1 + su0
+ B(1/s, u0)

1 − su0

]}
(43a)
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where

A(1/s, u0) = α(1/s)α(u0)− β(1/s)β(u0) (43b)

B(1/s, u0) = α(1/s)β(u0)− α(u0)β(1/s) (43c)

and

α(1/s) = 1 + s

∫ ∞

0
du′ K(u

′)
1 + su′ β(u

′) (44a)

β(1/s) = s

∫ ∞

0
du′ K(u

′)
1 + su′α(u

′) . (44b)

These last two expressions are most easily evaluated onceα(u) and β(u) have been
determined iteratively from (41). From equation (43), the asymptotic velocity in the free
stream can be shown to be

n(∞; u0) = u0χ+(u0)H(u0) (45)

where

χ±(u) ≡ α(u)± β(u) . (46)

χ±(u) satisfies the following integral equation:

χ±(u) = 1 ±
∫ ∞

0
du′ K(u

′)
u+ u′χ±(u′) . (47)

2.3. Milne problem with reflection

The appropriate boundary conditions for the Milne problem with partial specular reflection
are

f (0, u) = r(u)f (0,−u) u > 0 (48a)

f (0, u) → φ0(u)[A
r
0 − (u− x)] as x → ∞ . (48b)

Equation (34a) is to be solved subject to these boundary conditions.Ar0 is an accommodation
coefficient, or extrapolation distance, and is also to be determined in the process. To put the
problem in terms of the albedo problem already solved, the following substitution is made:

ψ(x, u) = f (x, u)− [Ar0 − (u− x)]φ0(u) (49)

which implies the following albedo problem is to be solved:[
u
∂

∂x
+ 1

]
ψ(x, u) = φ0(u)

∫ ∞

−∞
du′ ψ(x, u′) (50a)

ψ(0, u) = φ0(u)[(1 + r(u))u− (1 − r(u))Ar0] + r(u)ψ(0,−u) (50b)

lim
x→∞ψ(x, u) = 0 . (50c)

From equation (23), the distribution exiting at the wall for a general incoming
distribution is

ψ(0,−u) = φ0(u)

[
H(u)

∫ ∞

0
du′ g(u′)

u′

u+ u′H(u
′)

+H(u)
∫ ∞

0
du′ g(u′)

u′r(u′)
u+ u′ H(u

′)ψ(0,−u′)
]

(51a)

where

g(u) ≡ [(1 + r(u))− (1 − r(u))Ar0]φ0(u) . (51b)
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Reintroducing the assumed form (equation (49)) and analytically evaluating the integrals
where possible yields (using several well knownH -function relations)

f (0,−u) = φ0(u)

[
H(u)−H(u)

∫ ∞

0
du′ u

′r(u′)
u+ u′ H(u

′)f (0,−u′)
]
. (52)

The solution to (52) is obtained by noting that (37) can be reformulated as

f (0,−u; u0) = H(u0)W(u, u0) (53a)

where

W(u, u0) = φ0(u)

[
u0

u+ u0
H(u)+H(u)

∫ ∞

0
du′ u

′r(u′)
u+ u′ H(u

′)W(u′, u0)

]
. (53b)

Thus, on comparing (52) and (53b) and assuming uniqueness, we have

f (0,−u) = W(u,∞) . (54)

From equation (38), however,

W(u, u0) = φ0(u)H(u)

[
A(u, u0)

u+ u0
+ B(u, u0)

u− u0

]
(55a)

which in the limit implies

f (0,−u) = φ0(u)H(u)χ+(u) . (55b)

Equation (55b) is a rather surprisingly simple expression and is independent ofAr0. As
before, the net flow velocity is the Laplace transform inversion

n(x) = L−1
x {H(1/s)χ+(1/s)/s} (56)

and the transform of the velocity distribution foru > 0 is obtained from a transform of
(34a) as

f (s,−u) = φ0(u)

1 − su
[H(1/s)χ+(1/s)/s − uH(u)χ+(u)] (57a)

f (s, u) = φ0(u)

s(1 + su)
H(1/s)χ+(1/s) . (57b)

The net flow velocity at the wall can be obtained from a Tauberian limit of (56) as

n(0) = χ+(1/s) . (58)

Ar0 is determined by first expressingψ(0,−u) (from (49) and (55b)) as

ψ(0,−u) = φ0(u)[H(u)χ+(u)− (Ar0 + u)] .

Then, the transform of the net flow velocity is

q̄(s) = 1

s
[H(1/s)χ+(1/s)− Ar0 − 1/s] .

But q(∞) vanishes requiring

lim
s→0

sq̄(s) = 0 = lim
s→0

[H(1/s)χ+(1/s)− Ar0 − 1/s] . (59)

From an asymptotic analysis of theH -function, it can be shown that

χ+(1/s) = 1 + sχ+0 + O(s2)

where

χ+0 ≡
∫ ∞

0
du′K(u′)χ+(u′) .
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Equation (59) becomes

Ar0 = α2 + χ+0 . (60)

The important non-reflective case(r = 0) can be shown to give (usingH -function
relations)

f (0,−u) = φ0(u)H(u) (61a)

n(x) = L−1
x [H(1/s)/s] (61b)

A0
0 = α2 . (61c)

3. Numerical implementation and results

At the heart of the above theoretical treatment is the evaluation of theH -function given
by (16a). Unlike the correspondingH -function for radiative transfer, the range of the
independent variableu varies over the half-real line making the evaluation by quadrature
rather delicate. Several standard quadratures were tried, such as the Gauss–Hermite shifted
to [0,∞) and a Gauss–Laguerre quadrature as well as the Shizgal quadrature [8], especially
constructed for the half-real line with weight e−u2

. These all failed to give the desired
accuracy. After some experimentation, it was found that several transformations to bring
the integration interval to [0, 1], so that a shifted Gauss–Legendre quadrature could be
applied, were most effective. If, for integrals of the form

I ≡
∫ ∞

0
du′ φ0(u

′)f (u′)

the following transformation is introduced:

u′ = tanω

there results

I ≡
∫ π/2

0
dω sec2ω φ0(tanω)f (tanω) .

Then letting

ω = π

2
ω′

results in

I = π

2

∫ 1

0
dω′ sec2

(π
2
ω′

)
φ0

(
tan

(π
2
ω′

) )
f

(
tan

(π
2
ω′

) )
(62)

which can be evaluated by a shifted Gauss–Legendre quadrature. Using this quadrature,
most of the results contained in [4, 9] could be reproduced. Additional results, including
interior distributions for reflective boundaries were also obtained.

The second numerical method which is required for the evaluation of the desired
distributions is the numerical Laplace transform inversion. The numerical inversion used
was specifically developed for the evaluation of transport solutions. Central to the inversion
is a change of variable reducing the Bromwich contour integration to a combination of
sine and cosine integrals. These integrals are then transformed into an infinite series by
decomposing the infinite integration interval into finite integrals over the period of the sine
and cosine. The evaluation of the series is accelerated through the Euler–Knopp accelerator
with each integral evaluated by a Romberg integration.
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Table 1. Variation of xm with quadrature orderLm and reflection coefficientr.

r

Lm 0.0 0.01 0.5 0.99

10 1.423 419 2E+00 1.450 573 5E+00 4.024 175 6E+00 2.541 314 2E+02
15 1.439 588 8E+00 1.466 912 7E+00 4.051 244 5E+00 2.500 171 8E+02
20 1.437 149 3E+00 1.464 445 0E+00 4.046 349 0E+00 2.497 407 3E+02
25 1.437 088 9E+00 1.464 384 0E+00 4.046 287 2E+00 2.498 000 1E+02
30 1.437 108 6E+00 1.464 404 0E+00 4.046 328 5E+00 2.498 047 0E+02
35 1.437 111 4E+00 1.464 406 8E+00 4.046 333 7E+00 2.498 047 1E+02
40 1.437 111 7E+00 1.464 407 1E+00 4.046 334 1E+00 2.498 046 7E+02
45 1.437 111 7E+00 1.464 407 1E+00 4.046 334 2E+00 2.498 046 6E+02
50 — — — 2.498 046 6E+02

Table 1. (Continued.) Variation ofn(0) with quadrature orderLm and reflection coefficientr.

r

Lm 0.0 0.01 0.5 0.99

10 1.000 000 0E+00 1.022 479 9E+00 3.354 313 3E+00 2.529 044 4E+02
15 1.000 000 0E+00 1.022 506 4E+00 3.358 446 5E+00 2.489 284 3E+02
20 — 1.022 503 4E+00 3.357 958 8E+00 2.487 877 8E+02
25 — 1.022 503 4E+00 3.357 953 6E+00 2.488 414 7E+02
30 — — 3.357 957 9E+00 2.488 448 4E+02
35 — — 3.357 958 3E+00 2.488 447 6E+02
40 — — 3.357 958 4E+00 2.488 447 2E+02
45 — — 3.357 958 4E+00 2.488 447 1E+02
50 — — — 2.488 447 1E+02

Table 1 indicates the high degree of accuracy to which the solution of theBGK equation
can be obtained using the above methodology. The table displays the convergence of the
Milne extrapolation distance andn(0) with Gauss–Legendre quadrature order for several
constant reflection coefficients as given by (60). No more than an order of 50 is required
for seven place accuracy which is in agreement with the values in table 3 of [4]. The
determination ofα and β from (41) is accomplished through (46) and (47). In discrete
form, (47) becomes

Lm∑
k=1

[
δkj ± ω̃kKk

uj + uk

]
χ±k = 1 (63a)

where

χ±k ≡ χ±(uk)

for a Gauss–Legendre quadrature rule of orderLm with weightsωk and abscissasxk giving
from (62)

ω̃k = sec2
(π

2
xk

)
φ0

(
tan

(π
2
xk

))
ωk (63b)

uk = tan
(π

2
xk

)
. (63c)

Equation (63a) is solved by matrix inversion andα andβ are recovered from

αk = 1
2[χ+k + χ−k] βk = 1

2[χ+k − χ−k] . (64)
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Figure 1. Milne solution near singularity atu = x = 0.

Figure 2. Velocity distribution for albedo problem for no reflection.

In the Milne solution, a natural discontinuity arises because of the non-reentrant condi-
tion imposed at the surface. The singularity manifests itself as a discontinuity in the velocity
distribution atu = x = 0. A region near the singularity is shown in figure 1 forr = 0 (0.1)
0.3. Note the increase in the velocity distribution as more of the perturbation is reflected
back into the medium. The nature of the singularity, however, remains unchanged.

Figures 2 and 3 are included to demonstrate the nature of the solution with and without
wall reflection. In figure 2, the velocity distribution at several positions without wall
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Figure 3. Approach of net flow velocity to the asymptotic value for the albedo problem.

reflection is shown. As expected, with increasingx the net flow velocity approaches an
asymptotic value. Figure 3 displays the asymptotic approach for various constant reflection
coefficients. The asymptotic value is apparently reached within a shorter distance from the
surface with decreasingr.

While the above calculations were performed usingα andβ from (41), an alternative
evaluation exists in (36). If

f (0,−u; u0) = u0φ0(u)H(u0)H(u)Y (u, u0) (65a)

then

Y (u, u0) = 1

u+ u0
+

∫ ∞

0
du′ K(u

′)
u+ u′ Y (u

′, u0) (65b)

which can be numerically evaluated in the same way as forχ±(u). In addition, when
u = 1/s

Y (1/s, u0) = s

1 + su0
+ s

∫ ∞

0
du′ K(u

′)
1 + su′ Y (u

′, u0) (66)

for use in the Laplace transform inversion. Where applicable, the above calculations were
repeated withY as determined from (65b) with no apparent change in the results.

The final demonstration involves the albedo problem for an incoming perturbation source
distribution of a ‘Maxwellian’ form

g(u) = να

j+(α, β)
e−βu2/2 (67a)

normalized to unit entering current:

j+(α, β) = 0(1 + α/2)β−1(β/2)−α/2 . (67b)

The treatment of a general source is particularly straightforward. Since equation (37)
represents a Green’s function, by integration of (65a) the exiting distribution is

f (0,−u) = φ0(u)H(u)Y (u) (68)
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whereY (u) satisfies the following integral equation:

Y (u) =
∫ ∞

0
du′ u′

u+ u′H(u
′)g(u′)+

∫ ∞

0
du′ K(u

′)
u+ u′ Y (u

′) . (69)

The interior net flow velocity is again obtained from the relation given by (43) resulting in

n(x) = L−1
x {H(1/s)Y (1/s)/s} (70a)

with

Y (1/s)/s =
∫ ∞

0
du′ u′

1 + su′H(u
′)g(u′)+

∫ ∞

0
du′ K(u

′)
1 + su′ Y (u

′) . (70b)

Figure 4. Variation of velocity distribution, (a) with r for u0 = 2 for albedo problem, (b) for
Milne problem.
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Figure 5. Wall distribution for three Maxwellian sources.

Figure 6. Normalized net flow velocity for Maxwellian sources (na is the asymptotic net flow
velocity).

The asymptotic net flow velocity can be obtained from (29d). A special case arises
when α = 0 and β = 1 corresponding to injection at the background temperature
g(u) = √

2πφ0(u). For this case with a constant reflection coefficient, the solution to (69) is

Y (u) =
√

2π [(1 − r)H(u)]−1

implying

f (0,−u) =
√

2πφ0(u)/(1 − r) (71a)

and

n(x) =
√

2π/(1 − r) . (71b)

Thusn(x) is independent ofx for this case.
Figure 4 displays the wall distributions for the Maxwellian sources indicated. These are

the same sources considered in [9] and are in ‘graphical’ agreement with those presented
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Table 2. Asymptotic net flow velocity for Maxwellian sources.

α β n(∞)

0 0.5 3.413 423 8E+00
0 0.4 3.271 501 0E+00
0 0.5 3.053 621 0E+00
0 1.0 2.507 883 7E+00
0 2.0 2.110 975 6E+00
0 0.5 1.747 919 7E+00
0.5 1.0 2.701 557 6E+00
1.0 1.0 2.874 223 4E+00

there. The method in [9], misnamed the ‘two stream approximation’, should more properly
be referred to as a half-range expansion and also does not involve numerical evaluation
of principle value integrals. The method generally provides highly accurate asymptotic
results. However, the expansion does not accurately reproduce discontinuities of the velocity
distribution function at the wall. In figure 5, the approach of the net flow velocity withx to
its asymptotic or equilibrium value is shown forα = 0. It should be noted that the position
when equilibrium is reached is relatively insensitive to the injection temperature. Finally,
the asymptotic values for eight sources are given in table 2 to seven places. The maximum
quadrature order required in table 2 was 55.

All evaluations were coded inFORTRAN and performed on anSGI workstation with the
most comprehensive calculations taking no longer than 10 minutes.

4. Concluding remarks

An alternative approach to the determination of a highly accurate numerical solution to
the linearizedBGK equation of kinetic theory has been presented. The solution employs the
principles of invariance approach which completely avoids the necessity to evaluate principal
value integrals. The method features simplicity of solution with solutions to the albedo and
Milne problems for wall reflection obtained from the solution to the fundamental albedo
problem. The resulting explicit expressions can be evaluated to a high degree of accuracy
using a shifted Gauss–Legendre quadrature and numerical Laplace transform inversion.
The results found here are in complete agreement with those of [4, 8]. The numerical
evaluations have been implemented in a fast runningFORTRAN code available from the
author (for information, please send e-mail to ganapol@cowboy.nee.arizona.edu).

The approach presented here has a wider application, for example, for more complicated
scattering kernels, with no reflection. Another possible application is for a localized point
perturbation propagating into a gas filling a half-space resulting in a two-dimensional
problem. Additional applications include determination of the Green’s function with
application to finite media. Some of these considerations will be the subject of future
efforts.
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